Simulation of High Temperature Processes

Lec­tu­r­ers: Oden­thal / Kir­schen

The lec­tu­re “Simu­la­ti­on of High Tem­pe­ra­tu­re Pro­ces­ses” will be offe­red in Ger­man lan­guage in the sum­mer semes­ter as a block event. If you are inte­res­ted, plea­se cont­act the insti­tu­te secre­ta­ri­at (Tel.: +49 (0)241–80 25936) or Prof. Oden­thal (Tel.: +49 (0)211–881 4143).

Content

Flow and ther­mal effects play an important role in metall­ur­gi­cal high-tem­pe­ra­tu­re pro­cess engi­nee­ring. One exam­p­le is the flow of the hot steel melt in the BOF con­ver­ter. The geo­me­try of the con­ver­ter and the blo­wing lan­ce, the posi­ti­on of the blo­wing lan­ce abo­ve the melt, the num­ber and arran­ge­ment of the bot­tom plugs and the blo­wing rate of the pro­cess and flus­hing gases deter­mi­ne pro­duc­ti­vi­ty and steel qua­li­ty. Gene­ral ques­ti­ons are how the indi­vi­du­al pha­ses (melt, slag, gases) inter­act with each other, how splas­hing and the asso­cia­ted slag sti­cking to the lan­ce can be redu­ced and how the homo­ge­niza­ti­on of the melt can be inten­si­fied. Fur­ther examp­les are melt flows in elec­tric fur­naces (EAF), AOD con­ver­ters for stain­less steel pro­duc­tion, steel cas­ting lad­les, con­ti­nuous cas­ting dis­tri­bu­tors, ingot moulds and con­vey­or sys­tems. As a result of the extre­me con­di­ti­ons, most pro­ces­ses can­not be obser­ved or mea­su­red direct­ly. For this reason, such pro­ces­ses must be simulated.
In this lec­tu­re, basic flow phe­no­me­na of high tem­pe­ra­tu­re tech­no­lo­gy are explai­ned using prac­ti­cal examp­les from the steel indus­try. The cur­rent simu­la­ti­on tech­ni­ques, i.e. ope­ra­ting test, phy­si­cal simu­la­ti­on on the model and nume­ri­cal simu­la­ti­on (Com­pu­ta­tio­nal Flu­id Dyna­mics — CFD) are pre­sen­ted in detail. The lec­tu­re is accom­pa­nied by a series of exercises.
Stu­dents will be able to clas­si­fy and eva­lua­te metall­ur­gi­cal pro­cess engi­nee­ring equip­ment and the flui­dic and ther­mal pro­ces­ses that take place within it. The lec­tu­re imparts the basic know­ledge for the design of metall­ur­gi­cal plants and their components.

1. Intro­duc­tion
1.1 Examp­les from the pro­cess tech­nic and the metall­ur­gi­cal pro­cess technic

2. Dimen­sio­nal ana­ly­sis and dimen­si­on­less codes
2.1 Induction
2.2 Bridgman-Pos­tu­la­te – poten­cy repre­sen­ta­ti­on of the dimen­si­on formula
2.3 Pi-theo­rem of Buck­ing­ham (1914)
2.4 Examples
2.5 Codes of similarity

3. Basics /Basic know­ledge of flow- and ther­mal technic
3.1 Pos­si­bi­li­ties of flow simulation
3.2 Balan­ce equations
3.3 Navier-Strokes’s equa­ti­on (NS)
3.4 Reynold’s equa­ti­on (RANS/URANS)
3.5 Models of turbulence

4. Induc­tion to the area of gas dynamics
5. Flow mea­su­re­ment technology

6. Reac­tor theory
6.1 Reac­tor types
6.2 Eva­lua­ti­on cri­te­ria for reactors
6.3 Ide­al reactors
6.4 Real reactors
6.5 Dwell time for sta­tio­na­ry flow reactors
6.6 Deter­mi­na­ti­on of the dwell time distribution
6.7 Examples

7. Basics /Basic know­ledge of ther­mo­che­mi­cal modelling
7.1 Motivation
7.2 Cal­cu­la­ti­on of the free enthal­py of pure substances
7.3 Cal­cu­la­ti­on of the free enthal­py within mul­ti­com­po­nent systems
7.4 Algo­rith­ms of minimisation
7.5 Examp­les from the area of high tem­pe­ra­tu­re pro­cess tech­no­lo­gy: Refi­ne­ment of raw steel melts, wear of fire­pro­of deli­veries, etc.

8. Reac­tion kine­tic and trans­port cha­rac­te­ristics of fluids
8.1 Che­mi­cal reac­tor rates
8.2 Trans­port cha­rac­te­ristics of gases and plasma
8.3 CFD in che­mi­cal reac­ting media, such as com­bus­ti­on, decar­bu­ri­sa­ti­on, etc.
(Chap­ter 1–6: Prof. Odenthal)
(Chap­ter 7–8: Dr. Kirschen)