

Development and experimental validation of numerical heat transfer models for impingement jets

IGF Project No. 22751 N

2nd Project Advisory Committee Meeting

Eileen Trampe, M.Sc. Univ.-Prof. Dr.-Ing. Herbert Pfeifer

29th Nov, 2023

- Funding: Research Association of Industrial Furnace Manufactures
- Project duration: 01.02.2021 30.09.2023
- PAC chairperson: Dr. Tobias Mertens, Otto Junker GmbH

Gantt chart

	\int	Pr (1 st	ojec Jan	t Sta , 202	art 23)	Į] 1] (3	st PA 1 st M	C Me ay, 2	eting 023)	9	Ũ	2 ⁿ , (29	^d PA(9 th No	C Me ov, 20	eting 023))											
♣ Task / Project month ⇒	1		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27
WP 1: Project controlling & report																												
WP 2: Development & manu- facture new test bench																												
WP 3: Numerical parameter study																												
WP 4: Experimental parameter study																												
WP 5: Validation & model adaptation																												
WP 6: Adaptability study																												
WP 7: Optimisation & transfer at process level																												

Introduction

Impingement Jets

$$Nu = \frac{hD_H}{k_F} = f(Re, Pr, Geometry)$$

$$h = \frac{q}{T_s - T_e} \quad , \quad D_H = D = 2W$$

[1] T. L. Bergman, A. S. Lavine, *Fundamentals of Heat and Mass Transfer*, 8th ed., Wiley, Hoboken (NJ, USA) 2017.

Project objectives

- 1. Construction of a test bench for the optical flow measurement of impact jets
- 2. Development of a numerical model for the simulation of local Nußelt numbers of nozzle fields on impact surfaces
- 3. Development of a simplified numerical model for the simulation of mean Nußelt numbers of nozzle fields on impact surfaces
- 4. Validation and evaluation of the models

Research Project

Project structure

6

Milestone schedule

Milestone	Target	Actual
M1: Project started	01 st Jan, 2023	01 st Jan, 2023 √
M2:New test bench functional	31 st Aug, 2023	exp. Q I / 2024
M3: Experimental parameter study completed	30 th Nov, 2023	
M4: Numerical model created	31 st May, 2024	
M5: Investigations completed	31 st Dec, 2024	
M6: Project completed	31 st Mar, 2025	

Work stages

- Project started
- Documents university available
- Interim report
- Final report

WP 2 - Development & manufacture new test bench

Strip take-up

- Strip distance adjustable by electric motor
- Strip area
 630 x 1160 mm
- Side plates can be removed to examine the strip edges

Nozzle field

9

- Exchangeable
- Investigations of:
 - Nozzle geometry
 - Nozzle spacing

WP 2 - Development & manufacture new test bench

WP 2 - Development & manufacture new test bench

Work stages

- Design of the new test bench
- Procurement and preparation of individual parts
- Complete assembly of the test bench
- Commissioning of the test bench

 \checkmark

 \checkmark

 \square

Definition standard cases

Slot nozzle

- Nozzle width: 5 mm
- Nozzle high: 100 mm
- Nozzle length: 1000 mm
- Nozzle exit area: 100 cm²

Slot nozzle field

- 5 times single slot nozzle
- Spacing: 70 mm

Round nozzle

- Nozzle diameter: 25 mm
- Nozzle high: 80 mm
- Nozzle exit area: 20 cm²

Round nozzle field

Nozzle diameter: 25 mm

100 mm

Institut für Industrieofenbau

- Nozzle high: 30 mm
- Spacing:

WP 4 - Experimental parameter study

Measurement of the heat transfer coefficient (htc)

Round nozzle, d = 25 mm, H = 50 mm, p = 1550 Pa

WP 4 - Experimental parameter study

Measurement of the heat transfer coefficient (htc)

Slot nozzle, w = 5 mm, H = 50 mm, p = 1520 Pa

Work stages

- Manufacturing nozzles and nozzle fields
- Heat transfer measurements
- Flow measurements
- Analysing the measurements

AF IGF IDB Institut für Industrieofenbau

Flow Domain $H/D_H = 5$ 400 0.7 *∠p_{rel}* = 0 Pa 50 $\Phi = 133.6 \text{ MW/m}^3$ *p_{rel}* = 0 Pa∖ 100 $u = 51 \text{ m/s} \Longrightarrow Re \approx 34,630$ $T = 30 \,^{\circ}\text{C}$ 5

Computational Grid

Comparision of CFD Turbulence Models used Impinging Jet Problems

Turbulenz model	Computational cost	Impinging jet transfer coefficient prediction	Nu error	Ability to predict secondary peak
<i>k-ε</i> Model	•000	•000	15 - 60 %	•000
<i>k-ω</i> Model	•000	$\bullet \bullet \circ \circ$	10 - 30 %	$\bullet \bullet \circ \circ$
Realizable k-e	•000	$\bullet \bullet \circ \circ$	15 - 30 %	$\bullet \bullet \circ \circ$
Algebraic Stress Model	•000	$\bullet \bullet \circ \circ$	-	• • • • •
Reynolds Stress Model	$\bullet \bullet \bullet \bigcirc$	$\bullet \bullet \circ \circ$	25 - 100 %	$\bullet \bullet \circ \circ$
Shear Stress Transport (SST)	$\bullet \bullet \circ \circ$	$\bullet \bullet \bullet \bigcirc$	20 - 40 %	$\bullet \bullet \circ \circ$
<i>V</i> ² <i>f</i> Model	$\bullet \bullet \circ \circ$	••••	2 - 30 %	••••
Large Eddy Simulation	••••	••••	-	••••

[1] N. Zuckerman, N. Lior, Jet Impingement Heat Transfer: Physics, Correlations, and Numerical Modeling, Advances in Heat Transfer, Elsevier, Vol. 39, 2006.

Comparision of CFD Turbulence Models used Impinging Jet Problems

Turbulenz model	Computational cost	Impinging jet transfer coefficient prediction	Nu error	Ability to predict secondary peak		
<i>k-ε</i> Model			15 - 60 %			
<i>k-ω</i> Model	•000	$\bullet \bullet \circ \circ$	10 - 30 %	$\bullet \bullet \circ \circ$		
Realizable <i>k-</i>						
Algebraic Stress Model			-			
Reynolds Stress Model	$\bullet \bullet \bullet \bigcirc$	$\bullet \bullet \circ \circ$	25 - 100 %	$\bullet \bullet \circ \circ$		
Shear Stress Transport (SST)	$\bullet \bullet \circ \circ$	$\bullet \bullet \bullet \bigcirc$	20 - 40 %	$\bullet \bullet \circ \circ$		
V²f Model	•••••		2 - 30 %			
Large Eddy Simulation	••••	••••	-	••••		

[1] N. Zuckerman, N. Lior, Jet Impingement Heat Transfer: Physics, Correlations, and Numerical Modeling, Advances in Heat Transfer, Elsevier, Vol. 39, 2006.

Modelling

Shear stress transport k-w turbulence model

- Introduced in 1993 by ANSYS Inc.
- Blend the robust formulation of the k-ω model in the near-wall region with the free-stream independence of the k-ε model
- 5 Additional options for state solutions which are set by default

Generalized k-ω (GEKO) turbulence model

- Introduced in 2019 by ANSYS Inc.
- Based on k-ω model formulation
- Can be tuned without affecting model calibration by adjusting 6 free parameters
- Investigation of the optimum parameters for impact jets by Menzler in 2022

Results: The shear stress transport (SST) k-ω turbulence model

Results: The shear stress transport (SST) k-ω turbulence model

Results: The generalized k-ω (GEKO) turbulence model

Preparing Large Eddy Simulation (LES)

High demands on the grid quality for solving the LES

- Integral length scale I_o / cell volume > 4.8
- Dimensionless wall distance $y^+ < 1$
- Aspect ratio between 0.5 and 2.0

Structured hexahedral 28 Mio cells grid

Work stages

 Geometry design for the numerical parameter study Meshing for LES LES & evaluation Meshing for RANS Simulation \checkmark RANS Simulation & evaluation \checkmark Validation on the turbulence models with LES \square

- Construction of a test bench for the optical flow measurement of impact jets
- Realization of RANS simulations with the SST k- ω and GEKO turbulence model
- Construction of a grid for the LES

Outlook

- Carrying out the PIV measurements
- Investigation of the options of the k-w models
- Performing the LES
- Comparison of the LES and RANS simulations

Thinking the Future Zukunft denken

Eileen Trampe, M.Sc.

Department for Industrial Furnaces and Heat Engineering *RWTH Aachen University Kopernikusstr. 10* 52074 Aachen *GERMANY*

Tel.: +49 (0) 241 80-26051 E mail: trampe@iob.rwth-aachen.de

Industrielle Gemeinschaftsforschung

