

Development and experimental validation of numerical heat transfer models for impingement jets

IGF Project No. 22751 N

1st Project Advisory Committee Meeting

Eileen Trampe, M.Sc. Univ.-Prof. Dr.-Ing. Herbert Pfeifer

31st May, 2023

Project advisory committee (PAC)

PAC chairperson: tba

Gantt chart

	<u>,</u> (Proje 1 st Ja	ct Sta n, 20	art 23)	Ĺ] 1] (3	st PA 1 st M	C Me ay, 2	eeting 2023)	9																	
₽ Task / Project month ⇒	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27
WP 1: Project controlling & report																											
WP 2: Development & manu- facture new test bench																											
WP 3: Numerical parameter study																											
WP 4: Experimental parameter study																											
WP 5: Validation & model adaptation																											
WP 6: Adaptability study																											
WP 7: Optimisation & transfer at process level																											

Impingement jet

- Jet impacts vertically / possibly at an angle on impact surface
- Formation of a complex flow
- Convective heat transfer between impact jet and surface

Quelle: Bergman, T. L.; Lavine, A. S.: Fundamentals of Heat and Mass Transfer, 8th ed. Hoboken (NJ, USA): Wiley, 2017

Research Project

Impingement jet application

- Cooling sections in continuous strip furnaces
- Advantages:
 - Fast, uniform cooling
 - Use of pressure pads in strip floatation furnaces
- Differentiation:
 - Slot nozzles
 - Round nozzles
 - Combined nozzle systems

Design of nozzle systems

• Pre-design with Nußelt-relation

$$Nu = \frac{\alpha \cdot D_H}{\lambda} = f(Re, Pr, Geometry)$$

- Limited availability in literature
- Limited validity (geometry, Reynolds number)
- Detailed design
 - Measurements
 - Simulations
- Design targets
 - High heat transfer
 - Strip stability
 - Optimum fluid performance

Quelle: von der Heide, C.: Untersuchungen von Düsensystemen für die kontinuierliche Wärmebehandlung von Metallbändern. Diss. RWTH Aachen University, 2018

Project objectives

- 1. Construction of a test bench for the optical flow measurement of impact jets
- 2. Development of a numerical model for the simulation of local Nußelt numbers of nozzle fields on impact surfaces
- 3. Development of a simplified numerical model for the simulation of mean Nußelt numbers of nozzle fields on impact surfaces
- 4. Validation and evaluation of the models

Research Project

Project structure

8

	WP 2 Development & manufacture new test bench		WP 3 Numerical parameter study
	WP 4 Experimental parameter study		
controlling & report	WP 5 Validation & model adaptation		
Project	WP 6	WP 7	•
	Adaptability study	Optimisation	& transfer at process level

Target-performance comparison

Work Package	Progress	Status
WP 1: Project controlling & report	Act: 20 % Tar: 20 %	:
WP 2: Development & manufacture of the test bench	Act: 40 % Tar: 65 %	(:)
WP 3: Numerical parameter study	Act: 5 % Tar: 30 %	$\textcircled{\textbf{0}}$
WP 4: Experimental parameter study	Act: 0 % Tar: 0 %	
WP 5: Validation & model adaptation	Act: 0 % Tar: 0 %	
WP 6: Adaptability study	Act: 0 % Tar: 0 %	
WP 7: Optimisation & transfer at process level	Act: 0 % Tar: 0 %	

Milestone schedule

Milestone	Target	Actual
M1: Project started	01 st Jan, 2023	01 st Jan, 2023 √
M2:New test bench functional	31 st Aug, 2023	exp. Q I / 2024
M3: Experimental parameter study completed	30 th Nov, 2023	
M4: Numerical model created	31 st May, 2024	
M5: Investigations completed	31 st Dec, 2024	
M6: Project completed	31 st Mar, 2025	

Work stages

- Project started
- Documents university available
- Interim report
- Final report

31st May, 2023

11

Current test bench

Dimensions

- Height: 5 m
- Width: 3.1 m
- Length: 6.6 m

Measurement equipment: > 100 000 €

Current test bench

Measurement principle heat transfer coefficient

Arigr

Institut für Industrieofenbau

New test bench – volume flow measurement

New test bench – Laser measurement

- Implementation of laser protection
 - organisational
 - technical
- Installation seeding device
 - Inlet/ Outlet section
 - Particle size
 - Particle quantity

Work stages

31st May, 2023

18

- Design of the new test bench
- Procurement and preparation of individual parts
- Complete assembly of the test bench
- Commissioning of the test bench

i

i

 \square

 \square

Aims of work package 3

Identification of influences of the numerical modelling, selection of max. 3 suitable turbulence models

- Definition of 4 standard cases (1 RD, 1 SD, 1 RD field, 1 SD field)
- Pre-selection of potentially suitable turbulence models
- Mesh study, turbulence parameter study, variation of model options & boundary conditions
- Comparison LES \leftrightarrow RANS simulations

WP 3 - Numerical parameter study

Previous work Menzler

Applying the ANSYS GEKO Turbulence Model to Simulate Jet Impingement

- Based on k- ω model formulation
- Can be tuned without affecting model calibration, 6 free parameters
- Slot nozzle width 10 mm

Definition standard cases

Slot nozzle

- Nozzle width: 10 mm
- Nozzle length: 1000 mm
- Nozzle exit area: 100 cm²

Slot nozzle field

- 5 times single slot nozzle
- Spacing changeable

Round nozzle

- No single round nozzle present
- Nozzle diameter: 25 mm
- Nozzle exit area: 20 cm²

Slot nozzle field

- must be manufactured
- Spacing fix

Work stages

22

31st May, 2023

 Geometry design for the numerical parameter study 	ł
 Meshing for LES 	
 LES & evaluation 	
 Meshing for RANS Simulation 	
 RANS Simulation & evaluation 	
 Validation on the turbulence models with LES 	

Thinking the Future Zukunft denken

Industrielle

Gemeinschaftsforschung

Eileen Trampe, M.Sc.

Department for Industrial Furnaces and Heat Engineering *RWTH Aachen University Kopernikusstr. 10* 52074 Aachen *GERMANY*

Tel.: +49 (0) 241 80-26051 E mail: trampe@iob.rwth-aachen.de

