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Abstract 

Increasing demands on the steel market are leading to introduction of many technological 

innovations regarding the electric arc furnaces (EAFs). The area with significant potential is 

also advanced computer support, based on mathematical models estimating the process values 

which are not continuously measured, such as chemical compositions and temperatures of the 

steel, slag and gas. To achieve optimal process control using EAF models, two crucial 

characteristics of the later are required, i.e. sufficient accuracy and calculation speed, both 

affected by selection of the modelling approach and ordinary differential equation (ODE) 

solving method. The aim of this paper is to investigate the estimation accuracy and calculation 

speed of an EAF model, evaluated by three solving methods, i.e. fixed step Euler, variable 

step Runge-Kutta and Backward Differentiation Formula (BDF). The results are showing that 

the selection of the ODE solver has an enormous effect on simulation outcome. All three 

methods proved to be appropriate to obtain the estimated process values; however, achieving 

a desired level of precision leads to significant deviations in computational speeds. Thus, 
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when aiming for optimal model based EAF control, proper selection of the ODE solver is as 

important as the modelling approach, but too often neglected. 

 

1. Introduction 

The field of EAF modelling has expanded greatly in the last two decades and has become a 

tool, which is given considerable attention as an EAF operation support system. The models 

that have been developed can be classified in different categories according to their 

complexity, purpose and accuracy. They extend from the simplest[1], describing only the basic, 

necessary processes, to more enhanced ones[2-4], including more mechanisms and leading to 

more accurate results, to the most comprehensive configurations[5-8], consisting of all major 

phenomena in the EAF, providing the most accurate estimations of the process values. In an 

EAF modelling literature review by Turkdogan[9] it can be seen that dynamic models have the 

edge over static calculations when it comes to their use for either process monitoring, 

optimisation or control, since static models are more focused on offline statistical studies and 

are usually not implemented for online calculation purposes. When building a dynamic 

process model, the dynamics of the modelled process are usually described by ordinary 

differential equations (ODEs). In order to solve the ODEs numerically, which is the normal 

case in simulation, different ODE solving methods were developed up to now. The selection 

of proper ODE solver is one of the aspects that is closely related to the modelling and 

simulation in general, but is too often given insufficient attention. 

It is known that most of the EAFs are still operated based on operator’s experience and not on 

the actual conditions in the EAF (stage of melting, temperatures and compositions) due to the 

nature of the process (high temperatures and currents). Such operation of the EAF leads to sub 

optimal results and consequently to lower steel yield and quality and to higher energy and 

material consumptions, i.e. to higher operational costs. In order to optimise the EAF process, 

a better insight to the actual conditions in the EAF should be presented to the operator, by 
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either extended process measurements or by estimation of the unmeasured process values 

using complex process models. In this manner, approximate values of the crucial process 

variables, e.g. steel temperature and composition, are accessible to the operator, leading to 

more optimal action or decision in a given moment. In order to accurately simulate the 

conditions in an EAF and to present the estimation results to the operator in real time or 

perhaps even include an optimisation procedure, two requirements have to be met, i.e. 

sufficient model complexity and short enough computation time. The latter is related to all, 

model size, model complexity (ordinary or partial differential equations, algebraic equations 

etc.) and the ODE solving method. Since the model size and complexity usually cannot be 

changed in order to ensure sufficient accuracy, the solving method is the crucial part of the 

system, which significantly influences the computational speed. Moreover, the process’ 

dynamics represented by its time constants also play an important role when solving the 

ODEs, as the following rule applies: the faster dynamics, i.e. short time constants, the smaller 

integration steps are needed for proper ODE solving. In the case of an EAF modelling, the 

dynamics range from very fast, i.e. some of the chemical reactions, electrical relations etc.; to 

very slow, i.e. heat transfers, melting etc., which represents the so called stiffness of the 

system, which can also be an issue for the ODE solver. For this reason a comprehensive study 

on the selection of the integration method for EAF process simulation has been performed, 

focusing on both process value estimation accuracy and computational speed for online use of 

the process models incorporated for different purposes, i.e. process monitoring, optimisation 

or control.[10, 11] In this manner, the effects of three different ODE solvers are presented and 

compared, using a comprehensive EAF process model as a basis for calculations and three 

different solving methods, i.e. fixed step Euler, variable step Runge-Kutta and BDF 

methods.[12, 13] The first ones are two of the most common methods in each category 

(fixed/variable step), and the third method is a special solver for stiff ODEs. For the fixed step 

Euler method, step sizes between 0.25 s to 0.0001 s are investigated and their influence to 
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computational speed and accuracy for bath temperature prediction is compared to the variable 

step Runge-Kutta method and numerical differentiation formulas (NDF), here particularly the 

BDF method. 

2. EAF Model 

2.1 EAF Model Description 

The EAF model used to perform this research presents a comprehensive combination of all 

crucial processes occurring during the EAF steel recycling. The models were developed in 

accordance with fundamental physical laws by means of first order differential equations and 

were tested and validated on EAF operational measurements.[5-7, 10] The selected approach has 

its advantages and drawbacks when compared to other possibilities (e.g. fuzzy or neural 

network approaches, support vector machines etc.); however, the possibility to use the 

developed models with as many EAF designs as possible was the main aim of the 

development and for this reason the models are based on fundamental mathematical/physical 

approaches.[9] The validation of the model showed high estimation accuracy for measured 

average process values and satisfactory computational speed for the needs of simulation.[6, 7] 

The achieved results for the endpoint steel temperature of 1958 K±10.5 K were close to the 

average measured temperature of 1961 K±11.6 K. However, whether the model shall be used 

as a basis for online process optimisation, its evaluation speed needs to be increased 

significantly. The model used in this study is schematically presented in Figure 1. The 

presented model implements mathematical equations of all main physical processes appearing 

during the steel recycling process, i.e. thermal (including radiation), chemical and mass 

transfer. As presented, the overall model is designed of several modules, each representing a 

set of equations describing particular physical phenomena in the EAF (energy distribution, 

chemical reaction, mass calculations, heat transfer etc.). Due to the complexity of the 

modelled processes and in order to simplify the obtained models, the EAF layout is divided 

into several zones (solid steel, liquid steel, solid slag, liquid slag, gas, roof and walls), 
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assuming homogeneity and equal physical characteristics of each zone. The characteristics of 

each sub model are briefly explained in the following. 

 
Figure 1. Schematic presentation of the EAF model used in this study 

The heat transfer model is characterised by the following: 

 1st order ODEs are used to calculate the temperatures of the zones and are based on 

energy input/output balances, 

 heat transfers are calculated for each zone from: arcs, burners, chemical reactions, 

volatile material oxidation, electrode oxidation and other zones, 

 heat losses are calculated due to cooling of the furnace, off-gas extraction, steel and 

slag enthalpy, 

 calculation of the geometry supported (view-factor based) radiative heat exchange, 

 calculation of temperature dependent burner efficiency and continuous transitions 

between the zones (geometry supported). 

The mass transfer model is characterised by the following: 

 1st order ODEs are used to calculate the mass transfers between the zones and are 

based on zone temperatures and energy input/output balances, 

 elements and compounds which are used in each zone in the calculations are: 
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o steel zone: Fe, C, Si, Cr, Mn, 

o slag zone: FeO, SiO2, MnO, Cr2O3, CaO, MgO, Al2O3, 

o gas zone: N2, O2, CO, CO2, CH4, 

 consideration of reversible dynamics (cooling and solidification), 

 calculation of the mass transfers due to: melting, charging and slag addition, oxy-fuel 

burners, O2 lancing, C injection and chemical reactions. 

The chemical model is characterised by the following: 

 implementation of the main chemical reactions appearing in the steel melting process 

(oxidation of Fe, Si, C, CO, Mn, Cr; reduction of FeO, SiO2, MnO, Cr2O3), 

 1st order ODEs are used to calculate the rates of change of elements/compounds based 

on molar equilibria with reaction equilibria constants dependent on molar composition 

of the zone, 

 calculation of chemical energy exchange due to exothermic and endothermic reactions, 

 calculation of the foamy slag height, based on slag density/viscosity/surface tension 

and superficial gas velocity (CO) including slag decay, 

 calculation of online and endpoint steel, slag and gas compositions and relative 

pressure. 

In the first stage of development the presented EAF model was implemented with the fixed 

step Euler method. For further developments and the related increase in complexity it was re-

implemented in a manner that allows the use of all MATLAB R2014a integrated ODE solving 

methods. 

2.2 New EAF Model Implementation and Comparability of Results 

Due to the re-implementation, several model modifications were required to ensure a robust 

and stable simulation. Sudden changes through if-else conditions were removed and replaced 

by continuous control algorithms. These were realised by adding modified hyperbolic tangent 
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functions with a more or less steep curve shape to switch between ‘on’ and ‘off’ resp. one and 

zero. Also the mode of operation had to be slightly adjusted as well as the calculation of the 

melting geometry to avoid sudden changes and to realise progresses without any steps. All in 

all, these modifications lead to small deviations of the simulation results between the old fixed 

step Euler implementation and the new implementation, but enables the usage of all current 

and future MATLAB R2014a integrated ODE solver or a combination of them. As a 

consequence, the simulation results achieved with both implementations are not directly 

comparable regarding the question, which solution method is the more accurate one. Instead, 

the results of the Euler method implementation with different decreasing time step sizes are 

compared among themselves as well as the MATLAB integrated ODE methods Runge-

Kutta(ode45) and the BDF(ode15s) are also compared with each other. 

3. Numerical Solution Methods for ODEs 

Great efforts are made to model the physical processes in an EAF most precisely to predict 

important process variables with maximum precision. As a consequence of the relatively long 

simulated process time of at least 30 minutes up to more than 60 minutes for one melting 

period (tap to tap), the choice of the numerical solution method can influence the simulation 

results enormously, but is sometimes not considered in detail. The literature on solution 

algorithms used in EAF modelling and simulation is sparse. Even though lots of numerical 

EAF models can be found in literature, the focus is on the results achieved without referring 

to the solution method. 

In case of simple model implementations using basic fixed step size methods, a conflict 

between accuracy and computation time arises. In order to achieve fast results, larger step 

sizes have to be chosen which are leading to bigger deviations of the results. When process 

models are applied for research or optimisation calculations, the computation time is not 

critical and smaller time steps can be chosen to achieve accurate results, but taking into 

account numerical limitations. To avoid the conflict between the simulation time and the 
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accuracy, ODE solution methods with variable time step sizes can be applied to solve the 

initial value problem of the EAF model. 

By realising the new implementation it turned out that the described EAF model is a stiff 

system of ODEs. It means that there are some components of the solution decay, which are 

varying much more rapidly than others. Under these circumstances, the explicit numerical 

methods must take small step sizes to obtain satisfactory results. As a result, the Runge-Kutta 

calculation described below is still precise, but would take a long computation time. As there 

is no unique definition of stiffness in literature, complex ODE systems are identified to be 

stiff according to their behaviour. The presented EAF model consists of 52 ODEs, describing 

heat and mass transfers as well as pressure change and mass changes through chemical 

reactions which are described in earlier publications.[6, 7] The latter ODEs are changing 

quickly to reach equilibrium while heat and mass transfer are more or less fixed, i.e. stiff. The 

numerical solution methods applied for the simulation of the EAF model are shortly described 

below. The description gives only a short overview as there are more methods available to 

solve ODEs.  

3.1 Fixed Step Size Euler Method 

A simple, robust and frequently used method to solve initial value problems is the explicit 

Euler method. This method uses a self-chosen constant time increment h > 0 to calculate time 

following function values yn+1 according to the Equation 1, 2 and 3.[14] 

0 0( , ) ( ) y f t y y t y        (1) 

0 0,1,2,...  nt t nh n        (2) 

1 ( , ) 0,1,2,...   n n n ny y hf t y n        (3) 

The accuracy of the method depends on the change of f(tn,yn) and the selected time step size h, 

which influences the resulting error proportional. The smaller the selected step size, the more 

accurate the result but the longer the computation time. The great advantage of the method is 

its robustness and the simple programming via loop calculations and therefore it was used in 

the first stage of development of the EAF model. The possibility of choosing bigger time 
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steps for a fast simulation to check the plausibility and stability was accepted in contrast to the 

disadvantage of long simulation time for smaller time step sizes to reach high accuracy. In 

addition, the optimal time step size for a given accuracy cannot be calculated and thus creates 

a conflict of interest between accuracy and computational speed. Other Euler methods like 

implicit Euler method (also known as backward Euler method) or modified Euler method are 

not investigated, as these methods have the same disadvantage of a self-chosen step size and 

are not provided by MATLAB R2014a as a standard ODE solver. 

3.2 Variable Step Size Runge-Kutta Method 

As a common one step solver, the explicit Runge-Kutta(4,5) formula obtains its error through 

a comparison of a fourth order with a fifth order Runge-Kutta calculation and reduces its step 

size h if necessary to achieve the specified tolerance (Dormand-Prince method).[12, 14, 15] The 

calculation rule for a fourth order Runge-Kutta method to calculate following function values 

yn+1 for step size h > 0 is described with Equation 4 to 10. 

0 0( , ) ( ) y f t y y t y       (4) 

1 1 2 3 4( 2 2 )
6

     n n

h
y y k k k k         (5) 

1  n nt t h            (6) 

1 ( , ) n nk f t y            (7) 

2 1

1
( , )

2 2
  n n

h
k f t y k h          (8) 

3 2

1
( , )

2 2
  n n

h
k f t y k h          (9) 

4 3( , )  n nk f t h y k h          (10) 

In MATLAB R2014a, this ODE method is called ode45 and is recommended as the best 

function to apply as a first try for most problems with medium to high accuracy. The Runge-

Kutta method is also used to solve the EAF model from Ghobara, which is based on the EAF 

model from MacRosty and Swartz.[3, 16] For further investigation of accuracy and speed of the 

simulation, the ode45 is used as the reference solution for highest precision. 
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3.3 Variable Step Size BDF/NDF Method 

When a differential problem is stiff, Runge-Kutta(ode45) fails or is very inefficient, or when 

solving a differential algebraic problem, it is recommended to use multi-step BDF/NDF solver. 

This implicit solver is based on numerical differentiation formulas, and is capable to use 

backward differentiation formulas which are also known as Gear’s method.[13] The unknown 

value yn+1 is thereby calculated through a polynomial approximation, where the derivative of 

the polynomial satisfies the differential equation in point tn+1. The general calculation rule to 

calculate following function values yn+1 for step size h > 0 is described with Equation 11 and 

12. 

0 0( , ) ( ) y f t y y t y       (11) 

1 1 1 1

0

1
( ) ( , )    



  
k

n j n j n n

j

y t a y f t y
h

        (12) 

The coefficients aj are calculated through derivation of the interpolation polynomial and the 

initial values y1 to yk-1 are generated via single step methods. The BDF method (MATLAB 

function ode15s) computes following process values with a variable order k by achieving low 

to medium accuracy and takes less computation time in each step for solving stiff implicit 

equations than most other numerical solution method provided by MATLAB R2014a.[17] 

4. Results and Discussion 

In this section, the simulation results for different solution methods are compared in terms of 

accuracy and speed. In particular, the bath temperature and the net heat flow of the solid scrap 

and the liquid melt phase are investigated by using the old and the new model implementation. 

In terms of the bath temperature, highest accuracy is achieved when the average measured 

steel bath temperature of 1961 K is reached as the final simulation result, according to the 

validation within the first publication of the model.[6, 7] For the fixed step Euler method, step 

sizes between 0.25 s to 0.0001 s are investigated. The limits were selected in a way that for 

larger step sizes it wouldn’t be possible to obtain any results due to a lack of stability and for 

smaller step sizes; the amount of data wouldn’t longer be manageable with standard computer 
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capacity. For the MATLAB ODE methods, the step sizes are calculated by the calculation 

mechanism itself. The boundary conditions for the simulations are the same as described in 

the first publication of the model.[6, 7] The whole melting process of 85 t of scrap, divided into 

three baskets, corresponds to a simulated process time of 2700 s. The charging of the second 

and third scrap basket takes place at 900 s and 1500 s as can be seen in the results. 

4.1 Simulation Run Times 

Before discussing the results obtained, the simulation run times are compared first. Therefore, 

Table 1 shows the different durations for the investigated step sizes with the Euler method 

compared to the durations of the Runge-Kutta(ode45) and NDF/BDF(ode15s) methods. For 

large time steps, the Euler method provides quick results due to a small number of iterations. 

For decreasing time step sizes, the duration increases inversely proportional in consequence of 

the increased number of calculation loops. 

Table 1. Simulation run times for the investigated numerical solution methods 

 

step size [s] 

Euler method  

[s] 

Runge-Kutta(ode45) 

[s] 

NDF/BDF(ode15s)  

[s] 

0.25 5 

7178 61 

0.1 12 

0.01 113 

0.001 1133 

0.0001 12143 

 

The investigated variable time step solvers are resulting in completely different simulation run 

times. While the Runge-Kutta(ode45) method needs around two hours to simulate the whole 

process, the NDF/BDF(ode15s) needs only one minute. As described before, this is 

attributable to the stiffness of the ODE system. The mechanism of Runge-Kutta cannot 

increase the time step and reaches an average step size of about 0.003 s while the ode15s 

calculation reaches an average time step size of about 1.2 s for the investigated model. The 



  

12 

ode15s is much faster than the ode45 mechanism. For further comparison, the influence of the 

step sizes on the accuracy is discussed in the following sections. 

4.2 Bath Temperature 

Figure 2 and Figure 3 are showing the results for the bath temperature calculation. In both 

figures, the bath temperature starts at 1809 K and temperature drops are visible after the 

charging process of cold scrap. At the end of the process, the temperature of the melt 

increases to reach tapping temperature. Here, the big differences in the results for the 

calculation with the Euler method and different step sizes are obvious in Figure 2. For 

increasing time step sizes, the deviations are increasing, especially for long simulated process 

times. For big time steps, sudden changes of process variables are recognised in the 

simulation with a time delay or are even disregarded. Then smaller deviations are summing up 

and the calculation error growths. 

 
Figure 2. Bath temperature calculated with the Euler method 
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Figure 3. Bath temperature for Runge-Kutta(ode45) and NDF/BDF(ode15s) 
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the ode45 and ode15s mechanisms are not visible. The ode15s uses small step sizes were 

necessary and increases the step size were possible. 

As described in section 2.2, the results between the variable step size methods and the Euler 

method are not directly comparable, as small adjustments in the new MATLAB 

implementation were necessary. Nevertheless, the simulation with the variable step solvers 

are reaching the final bath temperature reliably whereas the simulation with the Euler method 

reaches different bath temperatures dependent on the chosen time step size. As a result, the 

correct step size for the Euler method cannot be easily selected in advance to the simulation 

and consequently, a time step size optimisation for the model is necessary or the time step can 

be optimised in a way to compensate modelling inaccuracies. 

4.3 Net Heat Flow to Scrap and Melting Phase 

The heat flows to the liquid melt phase and the scrap phase are relevant to determine the melt 

rate and the temperature change rate of the corresponding phases. For the simulation with the 

Euler method, Figure 4 and Figure 5 are showing differences in the results for different time 

step sizes as it is already noticeable in the results for the bath temperature calculation. For the 

biggest step size of 0.25 s, the time delay compared to the calculations with smaller step sizes 

is visible, especially when melting the first two baskets. At the end of the simulation, when 

melting the third basket, the deviations between the different step sizes are the biggest of up to 

7 MW in the heat flow to the liquid melt phase. For a decreasing time step size, the 

differences between the simulation results for small time step sizes are also decreasing. As a 

consequence, an increase in accuracy can be assumed for small time steps, as the simulation 

results are less dependent on the step size. But, as described in section 4.2, the numerical 

precision of the simulation software has to be considered as rounding errors are possible. 
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Figure 4. Net heat flow to solid scrap calculated with the Euler method 

 
Figure 5. Net heat flow to liquid melt calculated with the Euler method 

The results for both variable time step implementations, Runge-Kutta and NDF/BDF, are 

nearly the same with negligible differences and are shown in Figure 6 and Figure 7. The 

NDF/BDF mechanism provides the simulation results much faster than the Runge-Kutta 
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method. As described in section 3.2, Runge-Kutta is suggested as the most precise ODE 

solver in MATLAB. While the NDF/BDF calculation method reaches the same results it can 

be stated that the NDF/BDF method is fast and precise enough for reliable online process 

simulation with the applied EAF process model. A comparison of the simulation results 

between the different Euler and BDF/NDF implementations show similar curve shapes with 

variances due to the implementation methods and requirements. 

 
Figure 6. Net heat flow to solid scrap for Runge-Kutta(ode45) and NDF/BDF(ode15s) 
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Figure 7. Net heat flow to liquid melt for Runge-Kutta(ode45) and NDF/BDF(ode15s) 
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solving methods can be used in order to achieve the required accuracy of the calculations; 

however, the computation times, which are needed for proper estimation of the values, vary 

significantly. As has been shown, the simplest method used, i.e. fixed step Euler, shows 

strong dependence between the calculation accuracy and step size; thus, making it useful for 

accurate estimation only when small enough step sizes are used or otherwise, the estimated 

values diverge from the actual and the results become unusable. The consequence of using 

small step sizes is a long simulation time, exceeding the real time; thus, making the solver 

inapplicable in online real-time applications. The other two methods investigated, i.e. variable 

step Runge-Kutta and NDF/BDF, performed better than the fixed step method; however, large 

deviations in computational times occur as well. Although the Runge-Kutta method evaluated 

the model almost twice as fast as the Euler method with the smallest step size, its results still 

cannot be applied in real-time, since the time needed to obtain the results is approximately 

two and a half times slower than real time. From the estimation accuracy point of view, the 

NDF/BDF method performed as well as the Runge-Kutta; but, the time needed to evaluate the 

model was more than one hundred times shorter, i.e. 60 s for approximately 2600 s of 

simulation. For the specific case of the here applied EAF model simulation, the NDF/BDF 

method proved to be a fast, reliable and precise ODE solving method and therefore the 

optimal choice with the best possible accuracy to computational speed ratio. Often when the 

models are used for online process control, combinations of simulation and optimisation 

techniques are used in order to obtain the best possible action or a result. Knowing that 

optimisation is a highly time consuming task, using a solving method with short evaluation 

times is crucial in order to achieve real-time processing running in parallel to the EAF process. 

To conclude, the selection of the ODE solver has proved to be one of the more important 

elements when using mathematical models for calculation of the unmeasured EAF process 

values. In spite of proper modelling approach and a complex mathematical model, improper 
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selection of the solver can lead to inaccurate calculations; thus, making the overall system 

unusable in real applications. 
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